• Taliansky jazyk

Algoritmo di rete neurale per LDA/GSVD

Autor: Rolysent Paredes

La capacità della classica Analisi Discriminante Lineare basata sulla Decomposizione del Valore Singolare Generalizzato (LDA/GSVD) si deteriora quando si ha a che fare con insiemi di dati non etichettati perché LDA richiede input e target predefiniti. Inoltre,... Viac o knihe

Na objednávku

36.99 €

bežná cena: 41.10 €

O knihe

La capacità della classica Analisi Discriminante Lineare basata sulla Decomposizione del Valore Singolare Generalizzato (LDA/GSVD) si deteriora quando si ha a che fare con insiemi di dati non etichettati perché LDA richiede input e target predefiniti. Inoltre, l'algoritmo LDA/GSVD soffre di un alto costo di calcolo a causa dei suoi complessi calcoli matematici e delle iterazioni. Per affrontare questi problemi, questo studio introduce la Self-Organizing Map (SOM) come un nuovo metodo per etichettare i set di dati, e lo sviluppo di un algoritmo basato su reti neurali artificiali per superare il costo computazionale di LDA/GSVD. I risultati mostrano che l'uso di SOM e ANN sono efficaci nel risolvere i problemi dell'algoritmo tradizionale LDA/GSVD.

  • Vydavateľstvo: Edizioni Sapienza
  • Rok vydania: 2022
  • Formát: Paperback
  • Rozmer: 220 x 150 mm
  • Jazyk: Taliansky jazyk
  • ISBN: 9786204548609

Generuje redakčný systém BUXUS CMS spoločnosti ui42.