• Anglický jazyk

Enhancing Variants of K-Means

Autor: Raghavendra Chilamakur

Clustering analysis is one of the most commonly used data processing algorithms. Over half a century, K-means remains the most popular clustering algorithm because of its simplicity. Traditional K-means clustering tries to assign n data objects to k clusters... Viac o knihe

Na objednávku

36.99 €

bežná cena: 41.10 €

O knihe

Clustering analysis is one of the most commonly used data processing algorithms. Over half a century, K-means remains the most popular clustering algorithm because of its simplicity. Traditional K-means clustering tries to assign n data objects to k clusters starting with random initial centers. However, most of the k- means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose a fast heuristic to overcome this bottleneck with only marginal increase in Mean Squared Error (MSE). We observe that across all iterations of K-means, a data point changes its membership only among a small subset of clusters. Our heuristic predicts such clusters for each data point by looking at nearby clusters after the first iteration of k-means. We augment well-known variants of k- means like Enhanced K-means and K-means with Triangle Inequality using our heuristic to demonstrate its effectiveness. For various datasets, our heuristic achieves speed-up of up-to 3 times when compared to efficient variants of k-means.

  • Vydavateľstvo: LAP LAMBERT Academic Publishing
  • Rok vydania: 2019
  • Formát: Paperback
  • Rozmer: 220 x 150 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9786139983803

Generuje redakčný systém BUXUS CMS spoločnosti ui42.