- Anglický jazyk
Finite volume methods for deterministic and stochastic PDEs
Autor: Yueyuan Gao
This thesis bears on numerical methods for deterministic and stochastic partial differential equations; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we apply a semi-implicit time scheme together... Viac o knihe
Na objednávku
60.12 €
bežná cena: 66.80 €
O knihe
This thesis bears on numerical methods for deterministic and stochastic partial differential equations; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we apply a semi-implicit time scheme together with the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media. In Chapter 2, We perform Monte-Carlo simulations in the one-dimensional torus for the first order Burgers equation forced by a stochastic source term with zero spatial integral. In Chapter 3, we study the convergence of a time explicit finite volume method with an upwind scheme for a first order conservation law with a monotone flux function and a multiplicative source term involving a Q-Wiener process. In Chapter 4, we obtain similar results as in Chapter 3, in the case that the flux function is non-monotone, and that the convection term is discretized by means of a monotone scheme.
- Vydavateľstvo: Éditions universitaires européennes
- Rok vydania: 2016
- Formát: Paperback
- Rozmer: 220 x 150 mm
- Jazyk: Anglický jazyk
- ISBN: 9783841612380