• Nemecký jazyk

Isotrope Geometrie des Raumes

Autor: Hans Sachs

Der allgemeine Begriff der m-dimensionalen isotropen Mannigfaltigkeit Vm eines kom­ plexen euklidischen Rn wurde von J. LENSE gepragt und fiihrte zu einer Reihe aufier­ ordentlich interessanter Untersuchungen (vgl. [92J - [104]). Spater hat M. PINL (vgl.... Viac o knihe

Na objednávku

50.88 €

bežná cena: 56.53 €

O knihe

Der allgemeine Begriff der m-dimensionalen isotropen Mannigfaltigkeit Vm eines kom­ plexen euklidischen Rn wurde von J. LENSE gepragt und fiihrte zu einer Reihe aufier­ ordentlich interessanter Untersuchungen (vgl. [92J - [104]). Spater hat M. PINL (vgl. [138J - [160]) diese Thematik unter Aspekten der Riemannschen Geometrie konsequent weiterentwickelt. 1st x = x( Ul, U2, . .. ,u ) eine m-dimensionale Riemannsche Mannig­ m faltigkeit Vm, die in einem komplexen eukHdischen Rn(Xl;·· . ,xn) eingebettet ist und bezeichnet 8x (0. 1) 8u{3 ihren Mafitensor, so heifit Vm isotrop vom Rang r, wenn Rang (gcx{3) = r < m gilt. Fiir r = m liegt der klassische Fall einer regularen Riemannschen Metrik vor, die von Rn auf Vm induziert wird, wahrend man im Fall r > m gerne Vm als (m-r)-fach isotrop bezeich­ net. Speziell fiir r = 0, d. h. g"'{3 == 0 liegen sogenannnte vollisotrope Mannigfaltigkeiten vor, denn fiir das allgemeine Bogenelementquadrat (0. 2) 2 gilt hier ds == o. Diese vollisotropen Mannigfaltigkeiten wurden nicht nur von J. LENSE und M. PINL sondern auch von E. BOMPIANI (vgl. [13J - [17]) studiert. Allgemeine Einbettungsprobleme isotroper Mannigfaltigkeiten in regulare Riemannsche Raume hat vor allem W. O. VOGEL behandelt (vgl. [250J - [254]). Eine zusammen­ fassende Darstellung iiber den bisher angesprochenen Themenkomplex wird unabhangig von diesem Buch in Form einer Monographie von W. O. VOGEL publiziert werden.

  • Vydavateľstvo: Vieweg+Teubner Verlag
  • Rok vydania: 1990
  • Formát: Paperback
  • Rozmer: 244 x 170 mm
  • Jazyk: Nemecký jazyk
  • ISBN: 9783528063320

Generuje redakčný systém BUXUS CMS spoločnosti ui42.