• Anglický jazyk

Lasso-MPC - Predictive Control with l1-Regularised Least Squares

Autor: Marco Gallieri

This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an l1-regularised least squares loss function, in which the control error variance... Viac o knihe

Na objednávku

98.99 €

bežná cena: 109.99 €

O knihe

This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an l1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. While standard control techniques lead to continuous movements of all actuators, this approach enables a selected subset of actuators to be used, the others being brought into play in exceptional circumstances. The same approach can also be used to obtain asynchronous actuator interventions, so that control actions are only taken in response to large disturbances. This thesis presents a straightforward and systematic approach to achieving these practical properties, which are ignored by mainstream control theory.

  • Vydavateľstvo: Springer International Publishing
  • Rok vydania: 2018
  • Formát: Paperback
  • Rozmer: 235 x 155 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9783319802473

Generuje redakčný systém BUXUS CMS spoločnosti ui42.