• Anglický jazyk

Milnor Fiber Boundary of a Non-isolated Surface Singularity

Autor: Ágnes Szilárd

In the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has... Viac o knihe

Na objednávku

54.44 €

bežná cena: 60.49 €

O knihe

In the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has a 1-dimensional singular locus. We develop an explicit procedure and algorithm that describe the boundary M of the Milnor fiber of f as an oriented plumbed 3-manifold. This method also provides the characteristic polynomial of the algebraic monodromy. We then determine the multiplicity system of the open book decomposition of M cut out by the argument of g for any complex analytic germ g such that the pair (f,g) is an ICIS. Moreover, the horizontal and vertical monodromies of the transversal type singularities associated with the singular locus of f and of the ICIS (f,g) are also described. The theory is supported by a substantial amount of examples, including homogeneous and composed singularities and suspensions. The properties peculiar to M are also emphasized.

  • Vydavateľstvo: Springer Berlin Heidelberg
  • Rok vydania: 2012
  • Formát: Paperback
  • Rozmer: 235 x 155 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9783642236464

Generuje redakčný systém BUXUS CMS spoločnosti ui42.