• Anglický jazyk

Neural Network Algorithm for LDA/GSVD

Autor: Rolysent Paredes

The capability of the classical Linear Discriminant Analysis based on Generalized Singular Value Decomposition (LDA/GSVD) deteriorates when dealing with unlabeled datasets because LDA requires predefined inputs and targets. In addition, the LDA/GSVD algorithm... Viac o knihe

Na objednávku

36.99 €

bežná cena: 41.10 €

O knihe

The capability of the classical Linear Discriminant Analysis based on Generalized Singular Value Decomposition (LDA/GSVD) deteriorates when dealing with unlabeled datasets because LDA requires predefined inputs and targets. In addition, the LDA/GSVD algorithm suffers from high computation cost due to its complex mathematical calculations and iterations. To address these problems, this study introduces Self-Organizing Map (SOM) as a new method in labeling datasets, and the development of an Artificial Neural Network-based algorithm to overcome the computational cost of LDA/GSVD. The results show that using SOM and ANN are effective in solving the problems of the traditional LDA/GSVD algorithm.

  • Vydavateľstvo: LAP LAMBERT Academic Publishing
  • Rok vydania: 2019
  • Formát: Paperback
  • Rozmer: 220 x 150 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9783330347809

Generuje redakčný systém BUXUS CMS spoločnosti ui42.