• Taliansky jazyk

Studio comparativo di metodi di set per la classificazione

Autor: Marcel Katulumba Mbiya Ngandu

I metodi Ensemble si basano sull'idea di combinare le previsioni di diversi classificatori per una migliore generalizzazione e per compensare le possibili carenze dei singoli predittori.Si possono distinguere due famiglie di metodi: Metodi paralleli (Bagging,... Viac o knihe

Na objednávku

40.68 €

bežná cena: 45.20 €

O knihe

I metodi Ensemble si basano sull'idea di combinare le previsioni di diversi classificatori per una migliore generalizzazione e per compensare le possibili carenze dei singoli predittori.Si possono distinguere due famiglie di metodi: Metodi paralleli (Bagging, Random forests) in cui il principio è quello di fare una media di diverse predizioni nella speranza di un risultato migliore in seguito alla riduzione della varianza dello stimatore medio.Metodi sequenziali (Boosting) in cui i parametri sono adattati iterativamente per produrre una miscela migliore.In questo lavoro sosteniamo che quando i membri di un predittore fanno errori diversi è possibile ridurre gli esempi mal classificati rispetto a un singolo predittore. Le prestazioni ottenute saranno confrontate utilizzando criteri come il tasso di classificazione, la sensibilità, la specificità, il richiamo, ecc.

  • Vydavateľstvo: Edizioni Sapienza
  • Rok vydania: 2022
  • Formát: Paperback
  • Rozmer: 220 x 150 mm
  • Jazyk: Taliansky jazyk
  • ISBN: 9786204696782

Generuje redakčný systém BUXUS CMS spoločnosti ui42.