• Anglický jazyk

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

Autor: Arnaud Debussche

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with... Viac o knihe

1 kus skladom u vydavateľa Posielame do 7-10 dní

34.64 €

bežná cena: 38.49 €

O knihe

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

  • Vydavateľstvo: Springer International Publishing
  • Rok vydania: 2013
  • Formát: Paperback
  • Rozmer: 235 x 155 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9783319008271

Generuje redakčný systém BUXUS CMS spoločnosti ui42.