• Španielsky jazyk

Un Teorema de Reducción de Singularidades para Campos Holomorfos

Autor: Luis Javier Vásquez Serpa

Las Ecuaciones Diferenciales Ordinarias (EDO) son una de las disciplinas más importantes de las matemáticas ya que se utilizan de manera frecuente para modelar fenómenos de otras ramas de la ciencia: Física, Biología, Química, Economía, Ingeniería, etc.... Viac o knihe

Na objednávku

26.91 €

bežná cena: 29.90 €

O knihe

Las Ecuaciones Diferenciales Ordinarias (EDO) son una de las disciplinas más importantes de las matemáticas ya que se utilizan de manera frecuente para modelar fenómenos de otras ramas de la ciencia: Física, Biología, Química, Economía, Ingeniería, etc. Por otro lado, en la mayoría de problemas no es posible obtener de manera explícita la solución de una EDO. Gracias al matemático francés Henri Poinacaré se crearon otras técnicas que consisten en ver cómo se comporta la solución desde el punto de vista cualitativo (geométricamente); esto llevó a la teoría de los Sistemas Dinámicos. En el presente trabajo, consideramos campos vectoriales holomorfos de dimensión compleja 3, definidos alrededor de una singularidad aislada, dicrítica o no dicrítica. Es conocido que para campos holomorfos sobre un abierto de C² se tiene que después de un número finito de blowing-up's en los puntos singulares, la foliación asociada a dicho campo es transformada en una foliación que posee un número finito de singularidades, todas ellas irreducibles (Teorema de Seidenberg). En este trabajo se extiende el Teorema de Seidenberg para campos holomorfos sobre un abierto de C³.

  • Vydavateľstvo: Editorial Académica Española
  • Rok vydania: 2012
  • Formát: Paperback
  • Rozmer: 220 x 150 mm
  • Jazyk: Španielsky jazyk
  • ISBN: 9783659013041

Generuje redakčný systém BUXUS CMS spoločnosti ui42.