- Anglický jazyk
W*-Corresponcences, Finite Directed Graphs and Markov Chains
Autor: Victor Vega
Let A be the W*-algebra, L1(E(0),µ), where E(0) is a fnite set and µ is a probability measure with full support. Let P:A-A be a completely positive unital map. In the present context, P is given by a stochastic matrix. We study the properties of P that... Viac o knihe
Na objednávku
45.36 €
bežná cena: 50.40 €
O knihe
Let A be the W*-algebra, L1(E(0),µ), where E(0) is a fnite set and µ is a probability measure with full support. Let P:A-A be a completely positive unital map. In the present context, P is given by a stochastic matrix. We study the properties of P that are refected in the dilation theory developed by Muhly and Solel in Int. J. Math. 13, 2002. Let H be the Hilbert space L2(E(0),µ) and let pi : A - B(H) the representation of A given by multiplication. Form the Stinespring space H1. Then X is a W*-correspondence over P is expressed through a completely contractive representation T of X on H. This representation can be dilated to an isometric representation V of X on a Hilbert space that contains H. We show that X is naturally isomorphic to the correspondence associated to the directed graph E whose vertex space is E(0) and whose edge space is the support of the matrix representing P - a subset of E(0)×E(0). Further, V is shown to be essentially a Cuntz-Krieger representation of E. We also study the simplicity and the ideal structure of the graph C*-algebra associated to the stochastic matrix P.
- Vydavateľstvo: VDM Verlag Dr. Müller e.K.
- Rok vydania: 2014
- Formát: Paperback
- Rozmer: 220 x 150 mm
- Jazyk: Anglický jazyk
- ISBN: 9783639155242