• Anglický jazyk

Fault Tolerance for faults in Artificial Neural Networks

Autor: Saritha V

This bookk addresses the fault tolerance of RBF networks where all hidden nodes have the same fault rate and their fault probabilities are independent. Assuming that there is a Gaussian distributed noise in the output data, we have derived an objective function... Viac o knihe

Na objednávku, dodanie 2-4 týždne

36.99 €

bežná cena: 41.10 €

O knihe

This bookk addresses the fault tolerance of RBF networks where all hidden nodes have the same fault rate and their fault probabilities are independent. Assuming that there is a Gaussian distributed noise in the output data, we have derived an objective function for robustly training an RBF network based on the Kullback-Leibler divergence. We also find that for a fault-tolerance regularizer some eigenvalues of the regularization matrix should be negative. For the Tipping's regularizer and the OLS regularizer, the regularization matrices are positive or semipositive definite. Hence, they cannot efficiently handle the multinode open fault.

  • Vydavateľstvo: LAP LAMBERT Academic Publishing
  • Rok vydania: 2019
  • Formát: Paperback
  • Rozmer: 220 x 150 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9786200324030

Generuje redakčný systém BUXUS CMS spoločnosti ui42.