• Anglický jazyk

Generalized Low Rank Models

Autor: Madeleine Udell

Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data... Viac o knihe

Na objednávku, dodanie 2-4 týždne

95.76 €

bežná cena: 106.40 €

O knihe

Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well-known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

  • Vydavateľstvo: Now Publishers Inc
  • Rok vydania: 2016
  • Formát: Paperback
  • Rozmer: 234 x 156 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9781680831405

Generuje redakčný systém BUXUS CMS spoločnosti ui42.