- Francúzsky jazyk
GEOMETRIE QUANTIQUE D'OCNEANU
Autor: Hammaoui Dahmane
Les graphes de Di Francesco-Zuber du système SU(3) généralisent les diagrammes de Dynkin ADE du modèle SU(2) dans la classi¿cation des fonctions de partition invariantes modulaires en théorie des champs conformes CFT. On présente les di¿erents outils algébriques... Viac o knihe
Na objednávku, dodanie 2-4 týždne
54.63 €
bežná cena: 60.70 €
O knihe
Les graphes de Di Francesco-Zuber du système SU(3) généralisent les diagrammes de Dynkin ADE du modèle SU(2) dans la classi¿cation des fonctions de partition invariantes modulaires en théorie des champs conformes CFT. On présente les di¿erents outils algébriques qui permettent de construire la géométrie qui décrit les symétries quantiques associées à chaque graphe. D'abord on étudie les propriétés spectrales et on analyse la structure d'algèbre de chaque graphe G quand celui-ci posséde self-fusion. Ensuite on retrouve d'une manière algébrique les invariants modulaires de type I associés aux graphes sous- groupes et ceux de types II des graphes modules. On donne ensuite une réalisation algébrique de l'algèbre d'Ocneanu des symétries quantiques et le graphe d'Ocneanu Gamma(G ) correspondant. On a représenté chaque invariant modulaire par un diagramme qui code le spectre du graphe et la structure de son algèbre des symétries quantiques. L'ensemble des constantes de structures (nimreps) qui caractérisent toutes les algèbres étudiées sont interprétées en terme de CFT dans di¿erents environnements. Des données sur les structures d'algèbres de Hopf faibles sont aussi analysées.
- Vydavateľstvo: Éditions universitaires européennes
- Rok vydania: 2011
- Formát: Paperback
- Rozmer: 220 x 150 mm
- Jazyk: Francúzsky jazyk
- ISBN: 9786131553875