• Anglický jazyk

Multivariate Discrete q-Distributions

Autor: Charalambos A. Charalambides

This book is devoted to the study of multivariate discrete q-distributions, which is greatly facilitated by existing multivariate q-sequences and q-functions. Classical multivariate discrete distributions are defined on a sequence of independent and identically... Viac o knihe

Na objednávku, dodanie 2-4 týždne

39.59 €

bežná cena: 43.99 €

O knihe

This book is devoted to the study of multivariate discrete q-distributions, which is greatly facilitated by existing multivariate q-sequences and q-functions. Classical multivariate discrete distributions are defined on a sequence of independent and identically distributed Bernoulli trials, with either being a success of a certain rank (level) or a failure. The author relaxes the assumption that the probability of success of a trial is constant by assuming that it varies geometrically with the number of trials and/or the number of successes. The latter is advantageous in the sense that it permits incorporating the experience gained from the previous trials and/or successes, which leads to multivariate discrete q-distributions.  Furthermore, q-multinomial and negative q-multinomial formulae are obtained. Next, the book addresses q-multinomial and negative q-multinomial distributions of the first and second kind.The author also examines multiple q-Polya urn model, multivariate q-Polya and inverse q-Polya distributions. 


  • Presents definitions and theorems that highlight key concepts and worked examples to illustrate the various applications
  • Contains numerous exercises at varying levels of difficulty that consolidate the presented concepts and results
  • Includes hints and answers to all exercises via the appendix and is supplemented with an Instructor's Solution Manual

  • Vydavateľstvo: Springer Nature Switzerland
  • Rok vydania: 2024
  • Formát: Paperback
  • Rozmer: 240 x 168 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9783031437151

Generuje redakčný systém BUXUS CMS spoločnosti ui42.