• Anglický jazyk

Painlevé III: A Case Study in the Geometry of Meromorphic Connections

Autor: Claus Hertling

The purpose of this monograph is two-fold:  it introduces a conceptual language for the geometrical objects underlying Painlevé equations,  and it offers new results on a particular Painlevé III equation of type  PIII (D6), called PIII (0, 0, 4, -4), describing... Viac o knihe

Na objednávku, dodanie 2-4 týždne

37.61 €

bežná cena: 41.79 €

O knihe

The purpose of this monograph is two-fold:  it introduces a conceptual language for the geometrical objects underlying Painlevé equations,  and it offers new results on a particular Painlevé III equation of type  PIII (D6), called PIII (0, 0, 4, -4), describing its relation to isomonodromic families of vector bundles on P1  with meromorphic connections.  This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics.   It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections.

Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed.  These provide examples of variations of TERP structures, which are related to  tt* geometry and harmonic bundles.   
As an application, a new global picture o0 is given.

  • Vydavateľstvo: Springer International Publishing
  • Rok vydania: 2017
  • Formát: Paperback
  • Rozmer: 235 x 155 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9783319665252

Generuje redakčný systém BUXUS CMS spoločnosti ui42.