• Anglický jazyk

The Heat Kernel and Theta Inversion on SL2(C)

Autor: Serge Lang

The worthy purpose of this text is to provide a complete, self-contained development of the trace formula and theta inversion formula for SL(2,Z[i])\SL(2,C). Unlike other treatments of the theory, the approach taken here is to begin with the heat kernel... Viac o knihe

Na objednávku, dodanie 2-4 týždne

98.99 €

bežná cena: 109.99 €

O knihe

The worthy purpose of this text is to provide a complete, self-contained development of the trace formula and theta inversion formula for SL(2,Z[i])\SL(2,C). Unlike other treatments of the theory, the approach taken here is to begin with the heat kernel on SL(2,C) associated to the invariant Laplacian, which is derived using spherical inversion. The heat kernel on the quotient space SL(2,Z[i])\SL(2,C) is arrived at through periodization, and further expanded in an eigenfunction expansion. A theta inversion formula is obtained by studying the trace of the heat kernel. Following the author's previous work, the inversion formula then leads to zeta functions through the Gauss transform.

  • Vydavateľstvo: Springer New York
  • Rok vydania: 2010
  • Formát: Paperback
  • Rozmer: 235 x 155 mm
  • Jazyk: Anglický jazyk
  • ISBN: 9781441922823

Generuje redakčný systém BUXUS CMS spoločnosti ui42.